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Pseudospectral Solution of Atmospheric Diffusion Problems 
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The pseudospectral method is applied to the solution of advection:‘diffusion problems 
arising from the dispersion of contaminants in the atmosphere. Two techniques are de- 
veloped for the pseudospectral treatment of nonperiodic boundary conditions that typically 
exist in such problems. Calculations using the two forms of the pseudospectral method 
are presented for the dispersion of a contaminant emitted from an elevated, crosswind 
line source in the atmosphere. The results indicate that pseudospectral methods offer a 
promising alternative to finite-difference methods for such problems. 

I. INTRODUCTION 

The prediction of the dynamic behavior of trace contaminants in the atmosphere 
is generally approached through numerical solution of the so-called atmospheric 
diffusion equation [ 1,2], 

where c is the mean concentration of the contaminant (assumed chemically inert); 
u, v, and w are the three components of the mean wind velocity; and K,. , K,, , and 
K,, are the turbulent eddy diffusivities. 

Considerable effort has been devoted to the study of the numerical solution of (I). 
By and large, these studies have been concerned with finite-difference methods, often 
with emphasis on reduction of the so-called numerical diffusion associated with the 
finite-difference approximation of the advective terms [3-91. Finite-difference-solution 
methods have proved to be convenient, and there exists a large body of experience 
associated with the solution of advection/diffusion problems such as (1) by finite- 
difference methods. Relatively recently, however, a new class of numerical techniques, 
spectral and pseudospectral methods, has emerged that offers a promising alternative 
to finite-difference methods for the solution of partial differential equations. The 
application of spectral and pseudospectral methods has been particularly successful 
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in the direct numerical solution of the two- and three-dimensional Navier-Stokes 
equations. Numerical simulations have been reported, for example, for two-dimen- 
sional, homogeneous turbulence [l&12], three-dimensional, homogeneous, isotropic 
turbulence [13], and inhomogeneous shear flows [14]. Other applications of the 
general spectral technique have been concerned with the equations of two- and three- 
dimensional guiding center plasmas [15], and Fourier expansion techniques have 
been used for the numerical solution of the Vlasov equation [16] and the solution of 
a class of linear second-order differential equations [17]. Of interest with respect to 
advection/diffusion problems such as (1) are the solutions for the two-dimensional 
advection of a scalar in a uniformly rotating flow field [18-201 and for the advective 
diffusion of a puff of material released by a line source in a two-dimensional shear 
flow [19]. 

In a spectral method the dependence of the dependent variable upon one or more 
of the independent variables (usually spatial variables) is represented by expansions in 
a discrete series of orthogonal functions. A Galerkin approach is used to project the 
original partial differential equation into a finite set of equations for the coefficients 
of the expansion. That is, the original partial differential equation is transformed into 
a set of ordinary differential equations relating the spectral coefficients of the fields 
of the independent variables so expanded. These equations contain convolution sums 
that arise from products of functions in physical space, sums that must be evaluated 
to solve the equations. An exact representation of all the retained frequencies is 
obtained, and neither phase errors nor aliasing terms are involved in the representation 
of spatial derivatives [20]. In a pseudospectral method the expansion of the dependent 
variable is used to evaluate directly, and without phase errors, the spatial derivatives, 
Products of functions are performed in physical space or wavenumber space, wherever 
the operations are local. Thereby, in a pseudospectral method the evaluation of 
convolution sums is avoided, but the resulting approximation contains aliasing terms 
[21]. In solving partial differential equations by spectral and pseudospectral methods 
very efficient computing schemes can be developed if Fourier series expansions are 
used. In such a case, the evaluation of convolution sums and of derivatives can be 
accomplished very efficiently by using a Fast-Fourier-Transform (FFT) algorithm [22]. 

The numerical solutions reported for advection/diffusion problems [ 18-201 show 
that the spectral and pseudospectral approaches produce more efficient computational 
schemes than conventional second- and fourth-order finite-difference methods. All 
the test problems previously considered [18-201 employed periodic boundary con- 
ditions. The numerical simulation of the dynamics of trace species in the atmosphere 
virtually always involves nonperiodic boundary conditions and, additionally, sources 
with constant or time-varying emission rates producing highly peaked and rapidly 
changing concentration distributions. The purpose of this paper is to apply the 
pseudospectral method to a two-dimensional version of (1) that retains all the relevant 
physical features of the full three-dimensional equation and that involves nonperiodic 
boundary conditions. In particular, we consider the advection and diffusion of a 
contaminant released by an elevated, infinite, crosswind line source into an atmospheric 
shear flow. 
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For theoretical aspects associated with pseudospectral methods we refer the reader 
to available literature [18, 20, 23-261. (The main object of this work is to develop 
and test pseudospectral algorithms for the solution of atmospheric diffusion problems.) 
In Section 2 we develop in detail the treatment of nonperiodic boundary conditions 
using Chebyshev expansions or by decomposition of the spatial distribution of the 
dependent variable into periodic and analytical nonperiodic functions. In Section 3 
we present the mathematical statement of the test problem, and in Section 4 we 
describe two different pseudospectral approximations for the numerical solution of the 
test problem based on different treatment of the nonperiodic boundary conditions. 
The two solution methods are implemented and compared in Section 5, where we 
also compare the results to available solutions by finite-difference and finite-element 
methods. 

2. TREATMENT OF NONPERIODIC BOUNDARY CONDITIONS 

We employ the pseudospectral method by using expansion of the dependent variable 
such that the coefficients of the expansion and the derivatives can be evaluated by an 
FFT algorithm. In addition, it is necessary that the expansions satisfy the boundary 
conditions. 

Periodic boundary conditions can be satisfied naturally by using a Fourier series 
expansion for the dependent variable. If a periodic function F(x) is specified by N 
values on equally spaced grid points x, = 274N, 12 = 0, l,..., N - 1, the corre- 
sponding values of the function Fn = F(x,) may be expressed by a finite Fourier 
series expansion, 

F, = c f(k) ew(ikJ, 
IklSNP 

n = 0, l,..., N - I. (2) 

The Fourier coefficientsf(k) can be calculated by the corresponding inverse transform, 

f(k) = $ y F, exp(-ikx,), I k I < N/2. 
n=O 

Differentiating expansion (2) term by term leads to an approximation for the deriva- 
tives (aF/ax), at each x, , 

(3, = ,k;N,2 [f(k) ikl expW& n = 0, l,..., N - 1. (4) 

The accuracy of this approximation can be estimated from the convergence properties 
of Fourier expansion (2) [18, 27, 281. The rate of convergence of the Fourier series 
depends on the degree ofsmoothness of F(x), as measured by the order of the derivative 
that first becomes discontinuous at any point in the closed interval over which F(x) 
is defined. Even if F(x) is smooth at all orders of its derivatives within the interval, 
it may have discontinuities at the boundaries of the interval, and these discontinuities 
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will affect the rate of convergence of its Fourier series. If a periodic function F(s) 
is infinitely differentiable, series (2) converges faster than any power of k-l for k + co, 
and the approximation is said to be of “infinite order.” For functions having conti- 
nuous derivatives only up to mth order, the coefficients in the Fourier series decrease 
as k-(“+l). A continuation of a real function F(x) as an odd or even function (instead 
of a periodic continuation) outside of its original interval of definition, e.g., [0, ~1, 
enables the satisfaction of boundary conditions like F(O) = F(r) = 0 or >F/& = 0 
ar x = 0 and n, thereby avoiding a decreased convergence rate of the Fourier ex- 
pansion. In this case the proper expansions are Fourier sine or cosine series that can 
be evaluated very efficiently using a standard FFT subroutine for complex numbers 
with corresponding pre- and postprocessing routines for real even or odd data sets [29]. 

If the derivatives of nonperiodic functions are computed by a finite Fourier expan- 
sion, the series is slowly convergent due to the so-called “ringing” or Gibbs pheno- 
menon at the discontinuities at the boundaries. In practical problems with nonperiodic 
boundary conditions it is necessary to improve the convergence rate of the expansions. 
In the present work we satisfy nonperiodic boundary conditions by two different 
procedures: (a) expanding F(x) in Chebyshev polynomials, and (b) decomposing F(x) 
into a third-order polynomial and a periodic residual. 

2.1. Chebyshev Polynonriuf Expunsiorz 

The main advantage of using Chebyshev polynomial expansions is that the con- 
vergence rate depends only on the smoothness of the function that is approximated 
and not on the nature of the boundary conditions. Jn this case we have to specify 
F(x) (e.g., on the interval I-1, I]) by (N + 1) values F* me F(x,) at the grid points 
X - cos (zH/N), IZ == 0, l,..., N. With n- th’ IS choice the Chebyshev expansion is 
equivalent to a Fourier cosine expansion, 

(5) 

where TX-() is the kth-degree Chebyshev polynomial defined by 7’,(cos 0) -= cos(k8). 
The double prime indicate that both the first and last terms of the sum are taken with 
a factor 4. The coefficients a, may be evaluated by the inverse transform of (5), 

E;, cos(vkn/N), I k I < N/2. (6) 

Applying the specific properties of the Chebyshev polynomials, we may evaluate 
an expansion for the derivatives with new coefficients at’, 

(7) 
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The coefficients ai’) may be calculated from the a, using the recursive relation [28] 

(1) (1) 
akml = aI+, -i- 2kal, , 

together with the starting conditions, 

at! I == 2Na,, 

a!& = 2(N - 1) aN--l . 
(9) 

Similar relations can be derived for higher-order derivatives. The coefficients aL of (6) 
and the derivatives (7) can be evaluated by an FFT algorithm. 

2.2. Decomposition Procedure 

Since the discontinuities of a function F(x), particularly those at the boundaries, 
control the convergence rate of a finite Fourier expansion, we may subtract certain 
functions, typically polynomials, from F(X) so that the residual will appear to the FFT 
to be a periodic function with sufficiently continuous higher derivatives [27,30]. For 
example. we can represent F(.x) as 

where E,;,(X) and F,,(x) are polynomial and periodic residual, respectively. The deriva- 
tives of F(s) are 

F’(x) = F9,‘(s) + F,.‘(x), 

F”(x) = F.;(s) f F:(x). (11) 

In particular, in subsequent applications, we choose F,(x) as a third-order 
polynomial, 

F,(x) = F(0) + b,x + b,X2 + b3X3, (12) 

with F,,‘(.u) = b, + 26,x t 3b,x2 and F;(x) = 2b, + 6b,s. The periodicity of F,.(x) 
requires that F?(O) = Fr(L), F,‘(O) = F,‘(L), F;(O) = F:‘(L), where the domain of 
interest is taken to be [0, L]. The coefficients b, , 6, , and b, are found from the 
periodicity conditions as 

b, = (1 /L) [F(L) - F(O)] - b,L - b,L?, 

6, = (I /2L) [F’(L) - F’(O)] - $ b,L, 

b, = (1/6L) [F”(L) - F”(O)]. 

(13) 

To evaluate b, , b, , and b, we first have to provide approximations for the first 
and second derivatives of F(x) at the boundaries, for example by polynomial inter- 
polation. If these approximations are good enough, F,(X) will be a “sufficiently 
continuous” periodic function, the derivatives of which can be evaluated by Fourier 
expansions such as (3) and (4). The derivatives F,,’ and F,” are then computed with 
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b, , 6, , and 6, , and finally F’ and F” are evaluated from (11). The whole purpose of 
this procedure is to increase the convergence rate of the Fourier expansions of F,(x) 
by avoiding the Gibbs phenomenon. 

2.3. Numerical Examples 

We now investigate the accuracy of computed derivatives applying FFT techniques 
For this purpose we use three simple analytical functions on a one-dimensional grid. 
We compare the accuracy of the results from the two procedures for the treatment 
of nonperiodic boundary conditions by evaluating the local relative errors, crel, 
e.g., for the first derivative of a function F(X): crel = (FtEnslytical-F~omr,uten)lF~nalyticat . 

i- 
-1.5- 

L 
T Fig 
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‘\,r-,_2-n~-DERlVATIVE EXPANSION ~~~~ 

,&!+--.A ,b! 1 ‘pi 
’ F,~ ,b I st DERIVATIVE, CHEBYSIHEV EXP d 

FIG. 1. Local relative errors of computed derivatives of a normal distribution (symmetrically 
located) using cosine and Chebyshev expansions (Fig, lb) and a decomposition procedure (Fig. lc) 
on a discrete grid with (N + 1) grid points (N = 16). 
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For the first example, Fig. la, we use a normal distribution F(x) located on a grid 
of N + 1 (N = 16) points such that an even continuation of the function outside the 
interval [0, ~1 is possible. If we expand E’(x) in a Fourier cosine series, the first deriva- 
tives P’(x) will be represented by a Fourier sine series and the second derivatives will 
be represented again by a Fourier cosine series. With these expansions, the computed 
first derivatives are exactly zero at the boundaries x = 0 and n-. The corresponding 
local relative errors, 1 crel /, will then increase for x+0, (see Fig. 1 b) since the analytical 
values for the first derivatives are approaching zero only for x -* -co. Applying 
a Chebyshev expansion of F(x), instead, improves j cTel by about two orders of 
magnitude (for the first derivative) in the region x + 0, as seen in Fig. lb. The de- 
composition procedure also produces very accurate first and second derivatives 
(see Fig. lc) except at the left-hand-side boundary (F’(0) and F”(O)), which indicates 
that the polynomial approximation of these values in the decomposition procedure 
was poor. 

For the second example, shown in Fig. 2a, we use an exponential function that 

IllI I I I I I I !/,,/I 
i = I 5 6 7 8 9 IO II 12 13 15 

IO- 

,i,,,,,,,,,,,l,lllllill,,,,,,,, 

i=l 5 IO 15 20 25 30 33 

FIG. 2. Local relative errors of computed derivatives of an exponential function’using a Chebyshev 
expansion (Fig. 2b) and a decomposition procedure (Fig. 2c) on a discrete grid with (N + 1) grid 
points (N = 16 and N = 32). 
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would cause the “ringing” phenomenon at the boundaries applying a finite Fourier 
expansion. Using a Chebyshev expansion instead, an average accuracy of [ crel 1 SW 1O-4 
results for the first derivative over the whole interval (Fig. 2b). The recursive algorithm 
(8) for the computation of the new coefficients &’ in the expansion for the first 
derivative F’(x) by using the prior coefficients uk in the expansion for the function 
F(x) may be ill-conditioned in the sense that errors in the smallest coefficients are 
magnified and decrease the accuracy of even the largest @. This problem can be 
checked easily for the exponential function used in this example, since in this case 
&’ should be equal to uk . Terminating the sequence of coefficients ai’) after having 
decayed to a small value (e.g., IO-*) or just ignoring the last two or three coefficients 
improves the accuracy of the first derivatives significantly, as shown in Fig. 2b. 
Figure 2c contains the local relative errors / crel 1 for the computed first and second 
derivatives applying the decomposition procedure. Increasing the number of grid 
points, of course, improves the accuracy, but the least accuracy for the derivatives 
generally must be expected to be at the boundaries. 

7 -N = 16 (ALL COEFF.) 

i= I5 IO 15 20 25 3033 
~,,,,IIi,,,,,!,I,,,,i,,,,,,!;,~ 

i=t 5 IO I5 20 25 30 33 

FIG. 3. Local relative errors of computed derivatives of a normal distribution (nonsymmetrically 
located) using a Chebyshev expansion (Fig. 3d) and a decomposition procedure (Figs. 3b and c) 
on a discrete grid with (N + 1) grid points (N = 16 and N 2: 32). 

In the third example we located the normal distribution from the first example 
nonsymmetrically. The results of the decomposition of F(x) and its derivative F’(x) 
into polynomials F,(x), and Fp’(x) and periodic residuals F,(X), and F,‘(X) are shown 
in Fig. 3a for N = 16. Figures 3b and c show the distribution of j erel 1 for the computed 
first and second derivatives, respectively (for N 7:: 16 and N = 32). Again, the most 
accurate derivatives result from a Chebyshev polynomial expansion (see Fig. 3d). 
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In summary, we find by computing the derivatives of three simple test functions 
using the two different procedures for the treatment of nonperiodic boundary con- 
ditions, that 

(a) expanding the given smooth functions into a Chebyshev polynomial series 
always produced the most accurate results (as measured by the local relative error), and 

(b) the accuracy of the decomposition procedure depends critically on the 
adequacy of the approximation of the derivatives at the boundaries of the interval. 

3. TEST PROBLEM: DISPERSION OF A CONTAMINANT FROM AN ELEVATED, 
CROSSWIND LINE SOURCE 

As a test problem we consider the dispersion of an inert contaminant from an 
elevated crosswind line source in the atmosphere. The line source of strength Q,, is 
located at a height h above the ground at x = 0 and begins emitting at t = 0. The 
resultant plume is confined between the ground (z = 0) and an elevated stable layer 
at z = H. The mean concentration c(x, z, t) is governed by the following special 
case of (I), 

g $- u(z) g = g (K,, g,, (14) 

where the turbulent mass flux in the x-direction has been neglected relative to advection 
The initial condition is 

c(x, 2, 0) = 0. (15) 

The boundary conditions at z = 0 and H reflect the physical conditions of no con- 
taminant fluxes across the two planes, 

ac 0 T&= 7 z = 0, H. (16) 

Finally, the x = 0 boundary condition specifies the source condition, 

40, z, t> = (QoMh)) %z - 4. (17) 

This test problem contains all the relevant physical features of (l), namely wind 
shear and advection, vertical turbulent diffusion, and time variation. 

Equations (14)-(17) may be placed in dimensionless form by defining 2 = z/H, 
X = xKz,(H)/H2u(H), 7 = tKz,(H)/H2, U = u/u(H), K = K,,/K,,(H), and C = 
u(H) He/Q, . The result is 

C(X, z, 0) = 0, 
C(0, z, T) = 6(Z - @)/U(O), 

aclaz = 0, z =o, 1, 

where 0 = h/H, the dimensionless height of the source. 

581/26/1-7 
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We will assume that the dimensionless velocity U(Z) and eddy diffusivity K(Z) 
are described by power-law distributions, 

U(Z) = Z”, (22) 

K(Z) = z. (23) 

The main reason for our choice forms (22) and (23) is that system (IS)-(23) corre- 
sponds to that considered previously [7, 8, 311. Thus, we will be able to compare 
our results to those obtained previously by these authors using other numerical 
techniques. Physically, a linear variation of K,, with z is associated with neutral 
stability, in which case 01 would be close to Q in value. For the purpose of our numerical 
study will consider values of 01 ranging from 0 to 0.5. 

The steady-state form of (1 S), subject to (20)-(23) has the exact solution [32] 

C(X, Z) = (1 + a) f JO{Pjz’l’ ‘);‘I JO~~.f”‘l+u)‘z} exp [ _ (1 + 1)’ "j-Y], 

JdPj)” (24) 
j=O 

where Jo(.) is the Bessel function of the first kind of order zero, and /Ij are the roots 
of J&3) = 0. The steady-state solution will be useful in evaluating the numerical 
solution of (18) once C has achieved steady state. 

4. NUMERICAL SOLUTIONS BY PSEUDOSPECTRAL APPROXIMATION 

In this section we develop the procedures to solve the test problem of Section 3 
based on the general discussion of Section 2. For the numerical solution of a two- 
dimensional problem we can select individual one-dimensional expansions in Z 
and X or a two-dimensional expansion in Z and X. In this work we have chosen the 
former. Computations with a two-dimensional Chebyshev-Cosine expansion showed 
no significant improvement in accuracy but required about 60% more computing 
time per time step. 

4.1. Use of Expansions in Chebyshev Polynomials and Fourier Cosine Series 

The boundary conditions (21) can be satisfied by expanding the vertical concen- 
tration distribution in a Fourier cosine series. 

C(X, z, T) = ;* i;(k, T) cos(?rkZ), 
k=O 

X = constant. (25) 

With an equidistant vertical grid point distribution Zj = j/&l, j = 0, I,..., K, , 
coefficients c(k, T) may be evaluated by an inverse transform (FFT-l) of (25), 

z‘(k, T) = -$- 2 C(X, Zj , T) cos(7rkj/K2), X = constant. (26) 
:’ 7=” 
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Differentiating (25) term by term leads to expansions for X/aZ and PC/L’Z2 that can 
be evaluated with an FFT subroutine using the coefficients from (26), 

[$$I j = l$: [-C(k, T) dc] sin(7&iiK,), 

[%lj = ,g; [-q/t-, T)(mt)2] cos(nkj/&>, 

where the subscript j indicates that the derivatives are evaluated at Zj . 
We expand the horizontal concentration distribution in (shifted) Chebyshev 

polynomials, and we use the nonequidistant sampling points, Xi = L(1 -- 
cos(~i~K,))/2. The result is a Fourier cosine expansion for the horizontal concen- 
tration distribution, 

C(X, Z. T) --_ ;’ c(k, 7) T,; ( 2x; L ) = ?’ - C(k, 7) cos(&/KJ, Z = constant. 
,. .A?” I:4 

(29) 

The first derivatives again result by differentiating (29) term by term, 

Z = constant, (30) 

where the new coefficients @‘(k, T) may be calculated from the old coefficients 
C(k, T) by relations (8) and (9), replacing the factor 2 in these equations by a factor 4 
(since we use shifted Chebyshev polynomials defined on [0, I] instead of [- 1, I]). 

The numerical solution of the advection-diffusion equation (18) proceeds in the 
following way (see the schematic outline labeled Method A in Fig. 4). At a particular 
time level II (where T = n LIT) we evaluated the coefficients of the expansion in the 
Z-direction (25) and in the X-direction (29) by inverse FFTs. The new Chebyshev 
coefficients C”)(k, T) for the derivatives in the X-direction may be calculated using 
(8) and (9). The evaluation of the first and second derivatives (for the Z-direction) 
in the wavenumber space are local operations, and the derivatives in physical space 
at all grid points may be evaluated by FFTs (27), (28) and (30). Note that we decom- 
pose the eddy diffusion term L’(KX/aZ)/aZ into the two terms (aK/aZ)(aC/aZ) and 
KPC~iZz. so that both terms can be evaluated by local operations in physical space. 
Finally. the advance to time level n + 1 is accomplished by a finite-difference step. 
We have chosen a second-order Adams-Bashforth predictor and Adams-Moulton 
corrector scheme which allowed a relatively large time step. 

4.2. Use qf N Decomposition Procedure 

We now consider the other alternative for satisfying nonperiodic boundary con- 
ditions described in Section 2. At a particular time level n we decompose the concen- 
tration distribution separately in each direction into a third-order polynomial C,, 
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PHYSICAL SPACE I WAVE NUMBER SPACE I 

ac _ ac aK ac 
T?- - U(Z) z + z x + K(Z) $ 

-1 

T’T 5 “AT : -..--------------f c? 2- 

~~~~~~~- 

T -------- ---, 

~~~~~~~ 

ac " 
Fi j= ) 

ac " aK 

I ' 
ax i j + Tj %~j+K(lj)($)~j 

I 

&n+l Evaluated by a finite-difference 
i,j step in physical space. 

METHOD B 

PHYSICAL SPACE WAVE NUMBER SPACE 

ac - 
z- 

_ u(z) z + ?!ix + K(Z) a2c 
ax az az iF I 

T=T r “A? : n 
-. 

'p,i + 'r,i 
FFT-' 
all j cCr--[Cri*kI]- 

'p.j + 'r,j 

Evaluated by a finite-difference 
step in physical space 

FIG. 4. Steps in the solution of the atmospheric diffusion equation by two different pseudo- 
spectral approximations. 
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and a periodic residual function C, . For example, in the X-direction (individually 
at all levelsj = 0, l,..., &) the decomposition is 

ax, , zj , T) =r c&G , zj , T) + G&G , zj 3 71, 1 = 0, l,..., KI . (31) 

If we provide approximations for the first and second derivatives of C at the 
boundaries X = 0 and L, the coefficients b, , b, , and b, for the polynomial C, can 
be evaluated by (13). (Note that L is just the arbitrary extent of the X-domain.) 
Thereby, the values of C, and its derivatives at all grid points can be determined. 
Subtracting the polynomials C, from the concentration distribution gives the periodic 
residual function C, that may be expanded in a Fourier series to evaluate its derivatives 
using FFTs. At all levelsj = 0, I,..., Kt we have 

C,(X, : zj ,T) = w-1 7 z, , T) - C,(X, , zj 5 4 

= 2 C&k, T) exp(ikX{), I = 0, I ,..., KI - 1. (32) 
lkjgK,/P 

Also, 

[f?,(k, T) ik] eXp(ikX& I = 0, 1 ,..., KI - 1. (33) 

We apply the same procedure in the Z-direction to provide all the desired deri- 
vatives at the grid points. In Fig. 4 we present a schematic outline of this method, 
referred to in Fig. 4 as Method B. Only the derivatives of the periodic residual functions 
are computed by FFT techniques, the derivatives of the third-order polynomials may 
be calculated analytically by using approximations (polynomial interpolation) of 
the derivatives of the concentration field at its boundaries. 

5. DISCUSSION OF NUMERICAL RESULTS 

The test problem (18)-(23) has been solved using the pseudospectral Methods A 
and B described in Section 4 for the following set of parameters: @ == 0.2; CL == 0, 
0.2, and 0.5; L = 0.2. The value of L = 0.2 ensures that advection and turbulent 
diffusion produce a nearly uniform vertical distribution of material at X = L. The 
exponents o( =-- 0, 0.2, 0.5 are characteristic of a uniform flow field, a moderately 
sheared field, and a strongly sheared field, respectively. 

The grid for the the two pseudospectral methods was K1 = Kz = 20 with a constant 
dimensionless time step of 47 = 10-3. To represent the Dirac delta function in (20) 
we computed a value of C at the source location by assyming a uniform concentration 
distribution over one-half a grid distance above and below the source, 

(34) 
=o elsewhere. 
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To compute concentration values at 2 = 0, where U = 0 (for (Y > 0), aC/aZ = 0, 
and K = 0, it is necessary to extrapolate the interior concentration distribution or 
to evaluate U and K at a point 2, , 0 < 2, < AZ. 

We consider first the case of a uniform flow field, 01 = 0. In this case a sharp 
concentration front moves away from the source with speed U = 1, and steady- 
state conditions are established immediately behind the location of the front as it 
passes a given point. This case is a useful one for studying numerical solutions, 
as the representation of the sharp concentration front is a particularly severe test 
of any numerical method. Figure 5 shows the computed concentrations at the source 

FIG. 5. Time-dependent concentration distributions for CY = 0 at source height (Z = 8 = 0.2) 
and at the ground (Z = 0). 

height (2 = @ = 0.2) and at ground level (Z = 0) at times 7 = 0.05, 0.10, 0.15, 
0.20, and 0.25 for the two methods. At the last time (T = 0.25) steady-state conditions 
prevail throughout the entire field. At these times the concentration front should 
be at X = 0.05, 0.10, 0.15, 0.20, and 0.25, correspondingly. The pseudospectral 
solutions in Fig. 5 indicate that the method is capable of producing a relatively 
sharp front moving with the correct speed, even though for Method A the 
grid points in the X-direction are nonequidistantly distributed at Xi --_ 0.5L ?: 
1 + cos(n-i/K,)). The computed steady-state results can be compared to the analytical 
solution (24), and it can be seen from Fig. 5 that both methods produce very accurate 
steady-state concentration profiles. 

The second case considered is that of iy = 0.2, a wind profile roughly charac- 
teristic of neutrally stable conditions. In Fig. 6 we compare computed concentration 
profiles at Z = 0.2 and 2 = 0 by both methods. Because of the interaction of wind 
shear and vertical turbulent diffusion the concentration front is smoothed out and 
moves with different speeds at different heights. The approach of the concentrations 
to steady state at different locations is shown in Fig. 7. In Fig. 7 we show the com- 
puted concentrations at two locations at source height very close to the source, a 
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FIG. 6. Time-dependent concentration distribution for a = 0.2 at source height (Z = 6 = 0.2) 
and at the ground (Z = 0). The inset shows the results of Runca and Sarei [7]. 
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FJG. 7. Time-dependent concentration values for 01 = 0.2 at several locations. 
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location in the middle of the field at the ground, and the location (X = 0,2, Z = 0) 
which is the last one to attain steady state. The corresponding steady-state values 
from the analytical solution (24) are shown at the right-hand side of the figure. 
The pseudospectral methods give a characteristic oscillatory behavior in time very 
close tb the source. However, after a short initial period these oscillations disappear. 
In Fig. 8 we compare the computed steady-state vertical concentration profiles 
at different X locations to the analytical solution (24). Both methods produce highly 
accurate steady-state solutions. The steady-state solutions obtained here are some- 
what more accurate than those of Runca and Sardei [7] reproduced in the inset to 
Fig. 8 that were obtained by a mixed Eulerian-Lagrangian method. 

1.0 
0.6 

Z 
a=0.2 8=0.2 0.4 

0.2 

Z .5 0 
01 2345678 

n 
-0. I 2--j 4 5 6 7b 2-3 4 5 6 7 8 9 IO 

C c 
FIG. 8. Steady-state vertical concentration distributions for 01 = 0.2 as computed by Method A 

(Fig. 8b) and Method B (Fig. 8a). The inset (Fig. 8c) shows the results from Runca and Sardei [7]. 

The third case, 01 = 0.5, is characterized by a strongly sheared wind field and 
significant interaction between wind shear and vertical turbulent diffusion. A rapid 
accumulation of material at the ground close to the source takes place in this case. 
Steady-state conditions are first reached at levels above the source, whereas more 
time is required for the concentrations close to the ground to achieve steady state. 
Figure 9 shows the concentration distributions at Z = 0, calculated by both methods 
at different times T = 0.10, 0.20, 0.40 and 0.60. There is excellent agreement between 
the two methods concerning the time behavior of the concentration field. For the 
steady state, reached at about 7 = 1.0, Method B gives the more accurate results. 
Figure 10 shows selected vertical steady-state concentration distributions. The 
pseudospectral profiles are very accurate in the regions of high concentration and 
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FIG. 9. Time-dependent concentration distributions for o( = 0.5 at the ground (Z = 0). 
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FIG. 10. Steady-state vertical concentration distributions for a: = 0.5 as computed by Method A 
(Fig. lob) and Method B (Fig. lOa). 

exhibit discrepancies only close to 2 = 1.0. The advection-dominated peaks are 
reproduced extremely well; however, the methods have less success with the “diffusion- 
dominated” boundary condition aC/aZ = 0 at Z = 1. On the whole, however, 
the accuracy for the steady-state profiles predicted by both pseudospectral approxi- 
mations in all three cases (a = 0, 0.2, 0.5) is very satisfying. 
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The major problem in applying a pseudospectral method for the numerical solution 
of the test problem was the oscillatory spatial errors in the solution, typical for a 
method using Fourier expansions. In the highly peaked field close to the source 
these errors cause oscillating positive and negative concentration values at the outer 
edges of the concentration distribution where the errors finally reach the same order 
of magnitude as the concentration values. To eliminate disturbances in the downstream 
concentration field we defined the concentrations to be zero in regions where the 
information content of the data was completely dominated by these oscillating errors. 
The use of a predictor-corrector time step also improved significantly the time 
behavior of the system. We have chosen a second-order Adams-Bashforth predictor 
and Adams-Moulton corrector scheme. 

The same test problem considered here has been solved numerically by a mixed 
Eulerian-Lagrangian finite-difference scheme [7], five different standard finite- 
difference schemes [8], and a finite-element method [31]. In Figs. 6 and 8 we included 
corresponding steady-state results from Runca and Sardei [7]. Unfortunately, for 
the case (Y = 0.5 only three-dimensional plots at a single time (T = 0.0224) were 
given by Sardei and Runca [S], and these plots are not amenable to comparison with 
our results since no numerical values were provided in the figures. Finite-element 
results are available for the steady-state concentrations of the case a: = 0.2 (vertical 
distributions at X = 0.02 and 0.05; horizontal distributions at 2 = 0 and 0.2) 
and for the vertical distribution at X == 0.02 for 01 = 0.5 [31]. We chose not to show 
these profiles here. In general, the results obtained in the present study for the steady- 
state distributions ar somewhat more accurate than those reported in the other studies 
just cited. 

In the choice of a particular method the main consideration is the accuracy 
attainable for a given computation time. The time-consuming aspect of a pseudo- 
spectral method is the repeated use of an FFT subroutine. All the computations 
reported here were carried out on a CDC 7600 computer at the Lawrence Berkeley 
Laboratory of the University of California. The programs were compiled in an 
optimized version by the FTN4-compiler (option 2). The approximate computation 
time for each method was 11 set for 250 time steps (T = 0.25). Additional savings 
in computation time can be achieved by using an FFT subroutine in Assembler 
language rather than in Fortran. Direct comparisons of accuracy with the other 
methods used to solve the test problem were not possible although we were able 
to give some indication of the solutions obtained by other investigators in Figs. 6 
and 8. The five finite-difference methods studied by Sardei and Runca [8] required 
between 36 and 42 set on an IBM 360/91 for the case of 01 = 0.5 and r = 0.13. 
If we assume that an IBM 360/91 is roughly two times slower than a CDC 7600 and 
that a finite-difference method requires twice as fine a spatial resolution as a pseudo- 
spectral method for a comparable level of accuracy, these finite-difference methods 
would require about three times more computation time than a pseudospectral 
method for comparable accuracy. 
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6. CONCLUDING REMARKS 

We have demonstrated the feasibility of solving advection/diffusion problems, 
particularly those arising from atmospheric diffusion, by pseudospectral methods. 
The pseudospectral method is based on the principle of representing the dependent 
variable by an expansion in orthogonal functions to evaluate the spatial derivative 
very accurately at the zeros of the basic functions. The method is equivalent to an 
orthogonal collocation method with the particularity of applying expansions that 
enable the use of Fast-Fourier-Transform algorithms in passing back and forth 
between physical space and wavenumber space. The pseudospectral method is highly 
flexible and allows the inclusion of knowledge of the nature of the solution through 
the choice of the orthogonal functions and the choice of the particular space in which 
the calculations are to be carred out. Pseudospectral methods offer a promising 
alternative to finite-difference methods for the solution of atmospheric diffusion 
problems. 
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